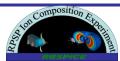
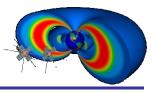


Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) Instrument

Kunihiro Keika⁽¹⁾, Louis J. Lanzerotti⁽¹⁾, and Donald G. Mitchell⁽²⁾

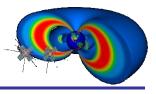

1) Center for Solar Terrestrial Research, New Jersey Institute of Technology, Newark, New Jersey 2) Space Department, The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland



RBSPICE Organization

Louis Lanzerotti Donald Mitchell Marian Titerence Scott Cooper Cindy Kim Felicia Margolies Principal Investigator Instrument Scientist Instrument Lead Engineer Instrument Lead Engineer Instrument Program Manager NJIT Program Manager

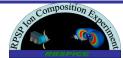
Co-Investigators


T. Armstrong	Fundamental Technologies
J. Manweiler	Fundamental Technologies
A. Ukhorskiy	JHUAPL
A. T. Lui	JHUAPL
P. Brandt	JHUAPL
M. Sitnov	JHUAPL
G. Ganguli	Naval Research Laboratory
D. Summers	University of Newfoundland
Y. Miyoshi	Nagoya University
N. Tsyganenko	St. Petersburg University

RBSP Mission Overarching Science Questions

•Which physical processes produce radiation belt enhancement events?

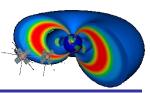
•What are the dominant mechanisms for relativistic electron loss?

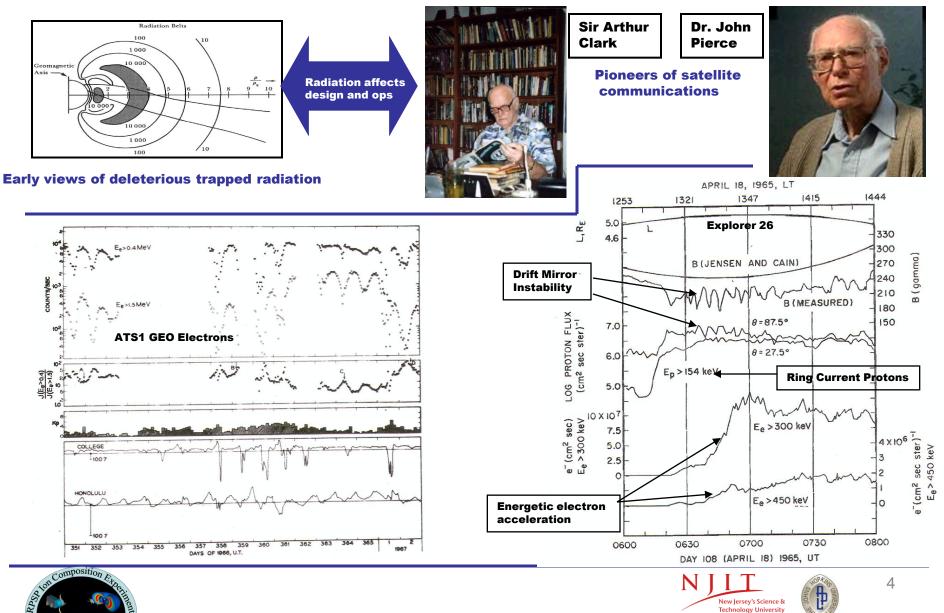

•How do ring current and other geomagnetic processes affect radiation belt behavior?

RBSPICE makes critical contributions, by determining:

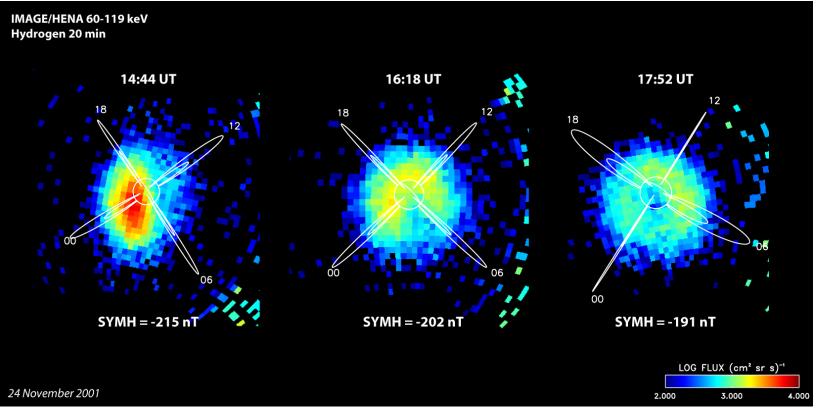
•How does space weather create the storm-time ring current around Earth?

•How does the ring current supply and support the creation of the radiation belt populations?

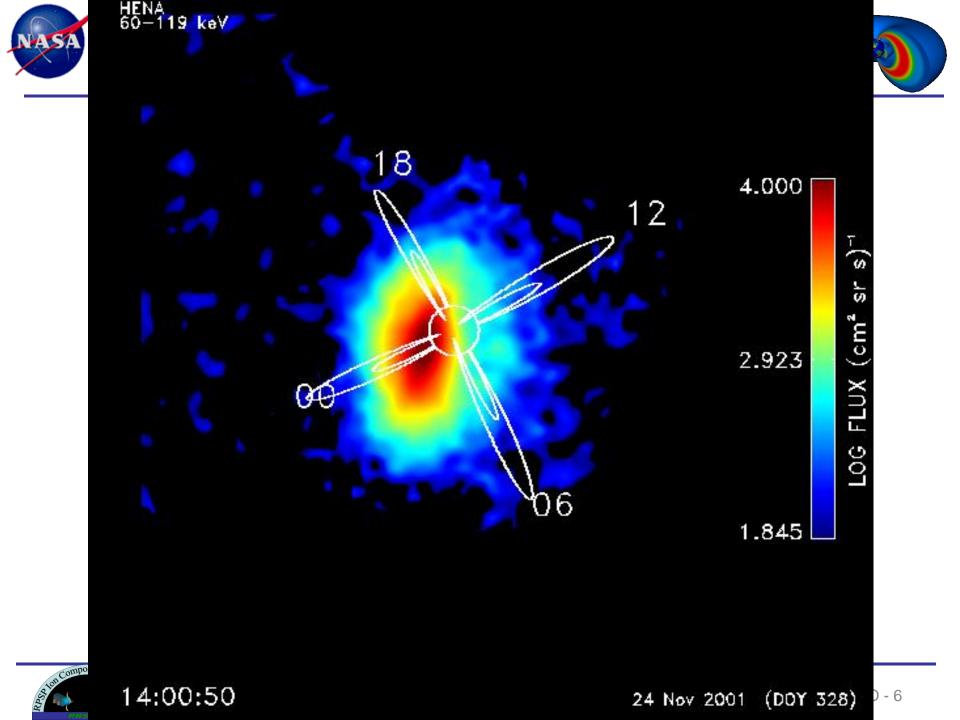

•How can the ring current also quickly reduce radiation belt particle intensities?



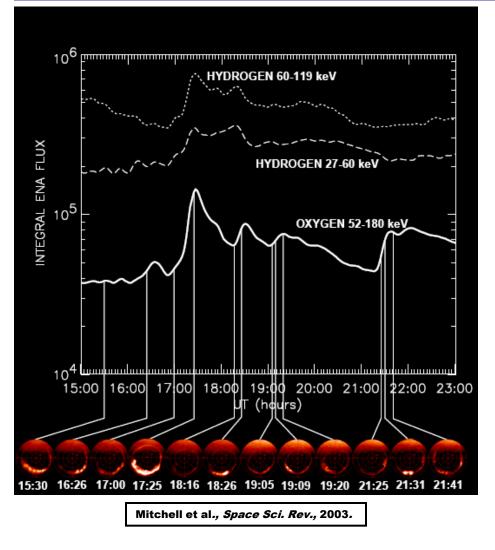
Trapped Radiation: Early Research Motivation

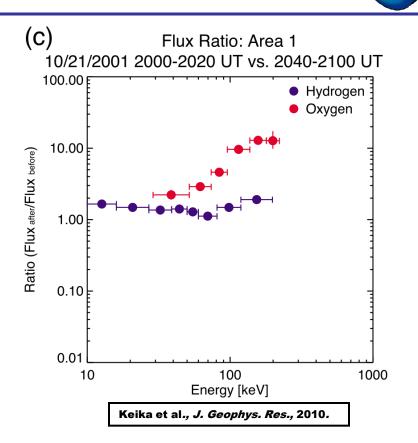


How does space weather create the ring current around Earth?


• Ring current intensity, composition, morphology can change dramatically within a few hours in geomagnetic storms.

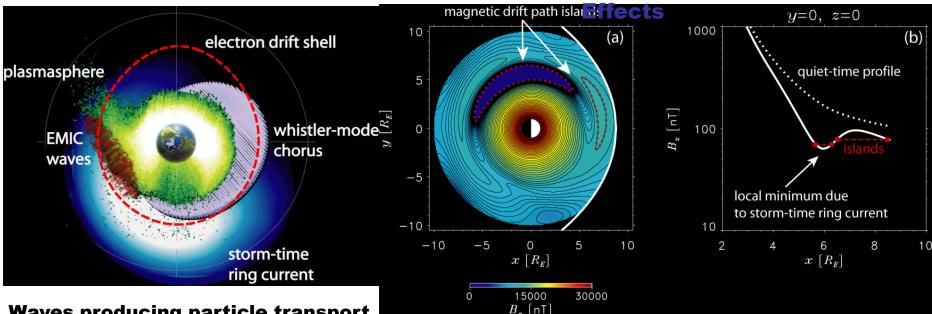
 These changes can produce profound effects on radiation belt electrons via local and global mechanisms.



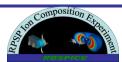


Dramatic change in the ring current: Differences between H+ and O+

Hydrogen and oxygen can have significantly different time & energy dependencies in their contribution to ring current dynamics.

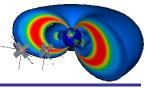


How does the ring current affect the dynamics of radiation belt populations?



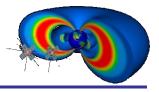
Global

Waves producing particle transport and loss during electron azimuthal drift orbit

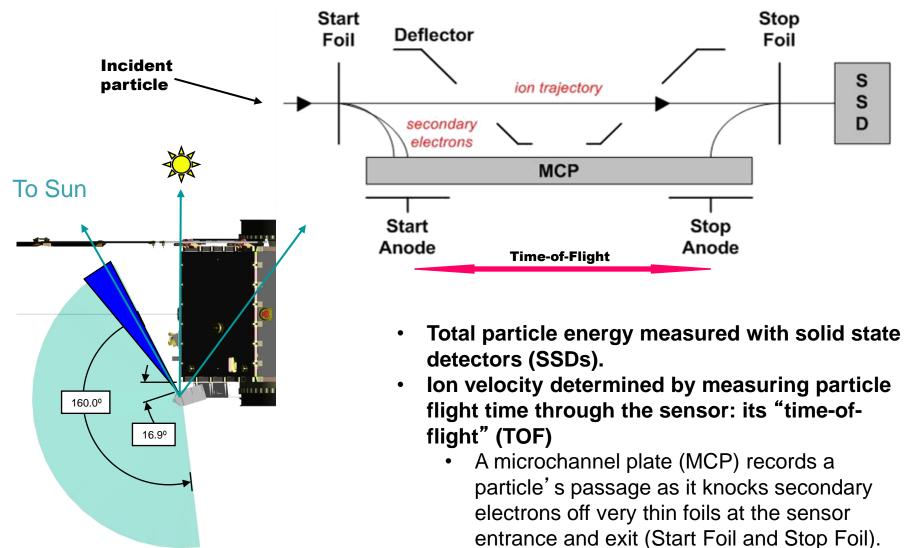

Storm-time ring current produces significant distortion of the magnetic field, affecting electron drift paths and in turn transport and loss

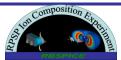
RBSPICE : Key Instrument Measurements/Performance

Parameter	Goal (Capability)	RBSPICE covers full range of expected Ring Current intensities		
Electron Energies	25 - 1000 keV (NOT REQUIRED)	from quiet to extreme events, with factor of 10 margin against saturation		
		10000000 Unsaturated rates up to ~10 X Super Storm, 10000000 — AMPTE Hydrogen DsT -160		
Ion Energies	H: 10 - 10000 keV	Peak counting rate,		
	He: 25 -10000 keV	1000000		
	O: 40 - 10000 keV	-AMPTE Hydrogen DsT -350		
Energy Resolution	20% for required energy range. 50%	Ϋ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́		
	above and below required energy	-Spenvis Peak Protons		
Time sampling	0.33 sec (1/36 spin)	TOF X PH TOF X E composition 1000 - 1-count level, large		
Angle resolution	15° x 12°	detectors		
Pitch Angle (PA)	0° -90° or 90° -180°	100 — Large Storm Model (~1.9x10^5/s, large		
Coverage		10 pixels) Maximum Rate (10^5/s		
Time for Full PA	1 spin	<u>~1 count/s level (large detectors)</u> Small pixels)		
Ion Composition	H above 10 keV			
	He above 50 keV	Energy (keV)		
	O above 45 keV	• Measurement quality independent of the angle		
Electron Sensitivity:	Sensor-G:0.0036-0.00018 (cm ² .sr)	 Measurement quality independent of the angle between the B- Field and the spin axis (α) 		
I=Intensity (1/cm ² .sr)	Intensity (1/cm ² .sr) Pixel-G: 0.0007-0.000035 (cm ² .sr) Intensity (1/cm ² .sr) Pixel-G: 0.0007-0.000035 (cm ² .sr) Intensity (1/cm ² .sr)			
	Up to 6E5 1/s counting	determine complete Ring Current energy density		
Ion Sensitivity	• High angle and energy resolution provide detailed			
	Pixel-G: 0.0007-0.000035 (cm ² .s.sr)	energy spectra and pitch angle.		
	Up to 3.5E5 1/s counting (TOF)			

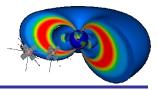


Ν

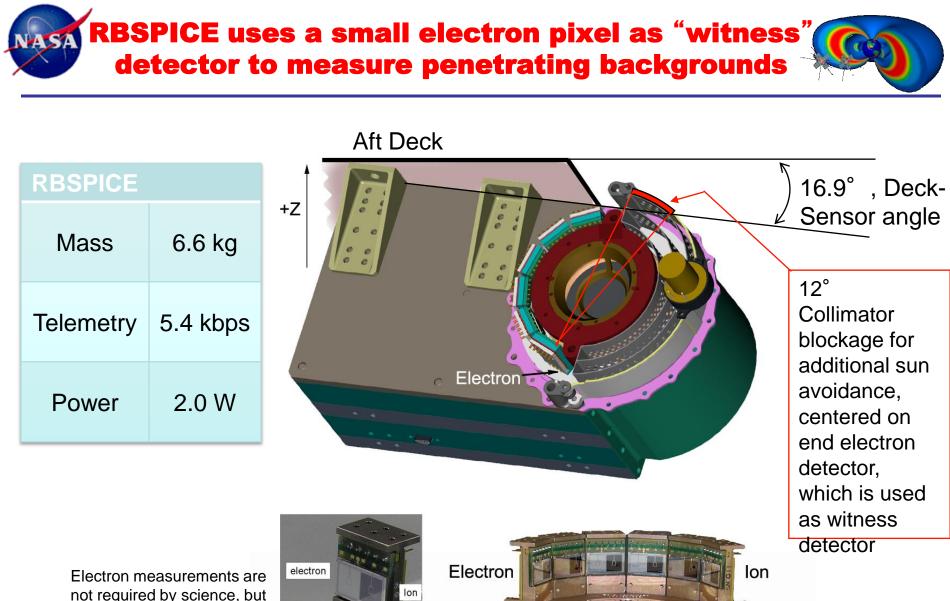

RBSPICE: A Time-of-Flight (TOF) versus Energy (E) measurement system

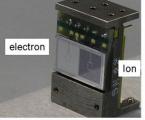


SO - 10

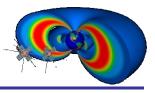

护

New Jersey's Science & Technology University




Design Drivers and Approaches			
High radiation - Electronics	 High Z housing reduces environment to ~25 krad Significant parts testing program 		
Intense natural particle Environment	 Dynamic range of foreground rates (fast timing circuitry, two ranges of SSD) High electron rates (same above + particle trajectory modeling with GEANT4, extra 4.5 gr/cm2 shielding, "witness" SSD) 		
High temporal and angular resolution	 Fast binning Multiple view sectors Sufficient telemetry allocation 		
High energy resolution	 Low detector noise High TOF resolution Sufficient telemetry allocation 		

not required by science, but necessary for measuring background. (up to 500 keV)



SO - 12

New Jersey's Science & Technology University

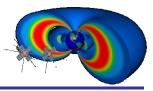
[#E bins, #polar, #azimuthal, time resolution]

Ion energy spectra: SSD only, No composition

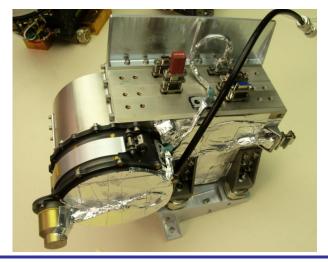
- 64 Ebins, 6 polar, 4 azimuth, 2 min
- 14 Ebins, 6 polar, 18 azimuth, 2 min
- Low proton energy: TOF vs. MCP pulse height
 - 10 Ebins, 6 polar, 18 azimuth, 12 sec
 - 18 Ebins, 6 polar, 4 azimuth, 2 min

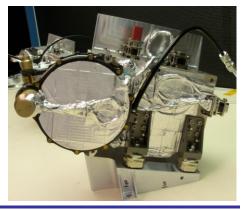
Ion energy with composition

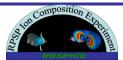
- 14 Ebins, 6 polar, 18 azimuth, 12 sec for H
- 10 Ebins, 6 polar, 12 azimuth, 12 sec for He
- 6 Ebins, 6 polar, 12 azimuth, 12 sec for O

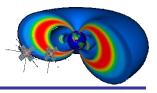

<u>Real-time Space Weather Data</u>

- 50 300 keV (proton): 4 Ebins, 1 polar, 18 azimuth, 12 sec
- 1-10 MeV (ions): 2 Ebins, 1 polar, 4 azimuth, 2 min

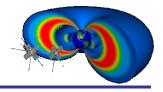




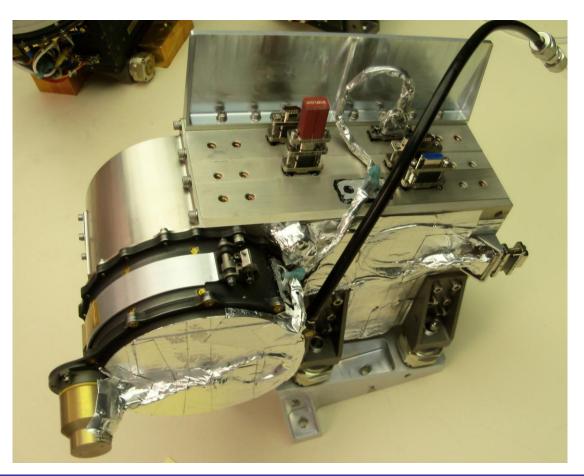

- RBSPICE's statement of task is to investigate the ring current ion plasma pressure and pitch angle distributions which change dramatically during geomagnetic storms.
- RBSPICE is a TOF x Energy particle detector with substantial heritage with previous flight instruments such as Galileo EPD and New Horizons PEPSSI.
- RBSPICE is designed to make clean measurements in a harsh radiation environment that includes Earth's ring current.

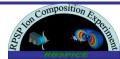


SO - 14



Topic/Objective	Conditions
Structure of the pressure-driven ring current	SYMH < -100 nT
Structure and dynamics of the storm-time ring current ion distribution	SYMH < -100 nT
A dawn-side source of energetic O ⁺ ions on low L-shells	SYMH < -100 nT with injections
Role of injections and pressure enhancements in the inner magnetosphere	SYMH < -100 nT with injections
Spectral dynamics of ring current ions and implications for global E-field variability	SYMH < -50 nT with variable IMF
Spatial and temporal scales of ion temperature anisotropies and EMIC wave coherence scales	Storm/injections in post-midnight sector
Relation between pressure and field inflation and stretching	SYMH < -50 nT





Thank you!!

b SO - 16